

A Pediatric Cancer Research Gene Panel

Timothy J.Triche, M.D., Ph.D.

Outline

- Panel Content
- Technical aspects of the Panel
- Performance Verification
- Research Case Study
- Conclusions

A tool to identify genetic defects in pediatric cancer research

- Developed with Ion Torrent and AmpliSeq technology*
- Tumor-specific gene fusions
- Over-expressed genes
- Amplified genes
- Known gene mutations, insertions, and deletions
- Gene mutations identified in the NCI MATCH program as candidate therapeutic targets

Designed Specifically for Use in Pediatric Cancer Research

Hotspot (82)

ABL1	FGFR2	NT5C2
ABL2	FGFR3	PAX5
ALK	FLT3	PDGFRA
ACVR1	GATA2	PDGFRB
AKT1	GNA11	PIK3CA
ASXL1	GNAQ	PIK3R1
ASXL2	H3F3A	PPM1D
BRAF	HDAC9	PTPN11
CALR	HIST1H3B	RAF1
CBL	HRAS	RET
CCND3	IDH1	RHOA
CCR5	IDH2	SETBP1
CDK4	IL7R	SETD2
CIC	JAK1	SH2B3
CREBBP	JAK2	SH2D1A
CRLF2	JAK3	SMO
CSF1R	KDM4C	STAT3
CSF3R	KDR	STAT5B
CTNNB1	KIT	TERT
DAXX	KRAS	TPMT
DNMT3A	MAP2K1	USP7
EGFR	MAP2K2	ZMYM3
EP300	MET	
ERBB2	MPL	
ERBB3	MSH6	
ERBB4	MTOR	
ESR1	NCOR2	
EZH2	NOTCH1	
FASLG	NPM1	
FBXW7	NRAS	

CNV (24) Full-gene CDS (44)

ALIC	ADC	DUEC
ALK	APC	PHF6
BRAF	ARID1A	PRPS1
CCND1	ARID1B	PSMB5
CDK4	ATRX	PTCH1
CDK6	CDKN2A	PTEN
EGFR	CDKN2B	RB1
ERBB2	CEBPA	RUNX1
ERBB3	CHD7	SMARCA4
FGFR1	CRLF1	SMARCB1
FGFR2	DDX3X	SOCS2
FGFR3	DICER1	SUFU
FGFR4	EBF1	SUZ12
GLI1	EED	TCF3
GLI2	FAS	TET2
IGF1R	GATA1	TP53
KIT	GATA3	TSC1
KRAS	GNA13	TSC2
MDM2	ID3	WHSC1
MDM4	IKZF1	WT1
MET	KDM6A	XIAP
MYC	KMT2D	
MYCN	MYOD1	
PDGFRA	NF1	
PIK3CA	NF2	

187 unique genes 3,110 amplicons in DNA assay 1,427 amplicons in RNA assay

Fusion & Expression (78)

ABL1	MECOM	RELA
ABL2	MET	RET
ALK	MKL1	ROS1
BCL11B	MLLT10	RUNX1
BCOR	MYB	SS18
BCR	MYH11	SSBP2
BRAF	MYH9	STAT6
CAMTA1	NCOA2	TAL1
CCND1	NOTCH1	TCF3
CIC	NOTCH2	TFE3
CREBBP	NPM1	TSLP
CRLF2	NR4A3	USP6
CSF1R	NTRK1	YAP1
ETV6	NTRK2	ZNF384
EWSR1	NTRK3	
FGFR1	NUP214	Gene
FGFR2	NUP98	Expression
FGFR3	NUTM1	BCL2
FLT3	PAX3	BCL6
FUS	PAX5	FGFR1
GLIS2	PAX7	FGFR4
JAK2	PDGFB	IGF1R
KAT6A	PDGFRA	MET
KMT2A	PDGFRB	MYCN
KMT2B	PLAG1	TOP2A
KMT2C	RAF1	
KMT2D	RANBP17	
MAML2	RARA	

All Major Pediatric Leukemia Translocations Are Represented

- Acute lymphoblastic leukemia ETV6-RUNX1, E2A-PBX, BCR-ABL1, MLL-AF4, CDKN2A
- Ph+ –like B-precursor ALL ABL1, ABL2, CSF1R, PDGFRB, EPOR, AK2, CRLF2, FLT3, KRAS, CD22delE12
- Acute myelogenous leukemia FLT3, NPM1, KIT, IDH1, IDH2, DNMT3A, RAS, RUNX1, TET2, CEBPA
- Acute promyelocytic leukemia PML-RARα

Pediatric Brain Tumors: Comprehensive Coverage Across All Common Types

AT/RT, cribiform neuro-epithelial tumor,
 SMARCB1

Schwannoma

Medulloblastoma, WNT, RT (Rhabdoid Tumor)
 SMARCA4

Medulloblastoma
GLI2, MSH2, MSH6, MYCN, PMS2, PTCH1, SUFU

Ependymoma RELA

Ependymoma, Meningioma
 NF2

Astrocytoma
 FGFR1, HIST1H3B, MDM2, MLH1, NF

PTPN11, TERT, TP53, QK1

Glioblastoma
 MDM4

Glioma, Astrocytoma gr I-IV, Ependymoma Gr 3-4

Glioma, Astrocytoma I-IV, Oligoastrocytoma
 H3F3A

Pilocytic Astrocytoma
 BRAF, FAM131B, NTRK2

Panel Identifies Key Gene Fusions in Pediatric Sarcomas

Rhabdomyosarcoma (embryonal & alveolar)

Ewing sarcoma

Synovial cell sarcoma

Infantile(congenital) fibrosarcoma

Desmoplastic small round cell tumor

Alveolar soft part sarcoma

Clear cell sarcoma (melanoma of soft parts)

Inflammatory myofibroblastic tumor

Fibromyxoid sarcoma

Dermatofibrosarcoma protuberans

Epithelioid sarcoma

Angiomatoid fibrous histiocytoma

Epithelioid hemangioendothelioma

Mesenchymal chondrosarcoma

Malignant peripheral nerve sheath tumor

Undifferentiated sarcoma

Midline carcinoma

Low grade fibromyxoid sarcoma

PAX3/7-FOXO1

EWS-FLI1/ERG

SYT-SSX1/2/4

ETV6-NTRKC

EWS-WT1

TFE3-ASPSCR1 (ASPL)

EWS-ATF1, EWS-CREB1

ALK-TPM3/4, CLTC, ATIC

FUS-CREBB3L2/1

COL1A-PDGFB

SMARCB1

EWS-CREB1

WWTRC1-CAMTN

HEY1-NCOA2

NF1/NF2 mut

BCOR-CCNB3, CIC-DUX4

NUT-BRD4

FUS-CREB1L1 and FUS-CREB1L3

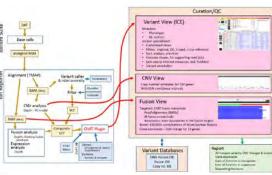
Outline

- Panel Content
- Technical aspects of the Panel
- Performance Verification
- Research Case Study
- Conclusions

There are Three Main Parts of the workflow

Ion Torrent Sequencing

Bio-Informatic Analysis



Ion Chef™ **ICE**SM

Ion™ S5 Sequencer™

Ion Reporter &

There are Advantages to Each Component of the assay

- Library Preparation = Ampliseq™*
 - Interrogate DNA and RNA isolated from FFPE
 - Small input (≥ 20 ng RNA and DNA)
 - Ion Chef™ automated library prep and chip loading
- Sequencing = Ion Torrent™*
 - Fast turn-around time (2 hours)
 - Automated alignment (FASTQ to BAM) and variant calling (VCF)
 - Ion S5 sequencer
- Bio-Informatic Analysis
 - Commercial Pipeline (Ion Torrent Suite™ & Ion Reporter™) *
 - Custom Scripts (ICEsM)

Virtually Any Type of Specimen Can Be Profiled

Blood and bone marrow (purple top tube)

- Fresh/frozen tissue
- FFPE tissue (unstained slide, blocks, scrolls)
 - sample quality is assessed prior to library preparation

Outline

- Panel Content
- Technical aspects of the Panel
- Performance Verification
- Research Case Study
- Conclusions

Performance Verification Over 500 Samples Processed

• 503 samples have been run to date

- 237 unique tumor samples
- Also measured panel against synthetic control material (Acrometrix, with known SNVs, InDels)

Performance

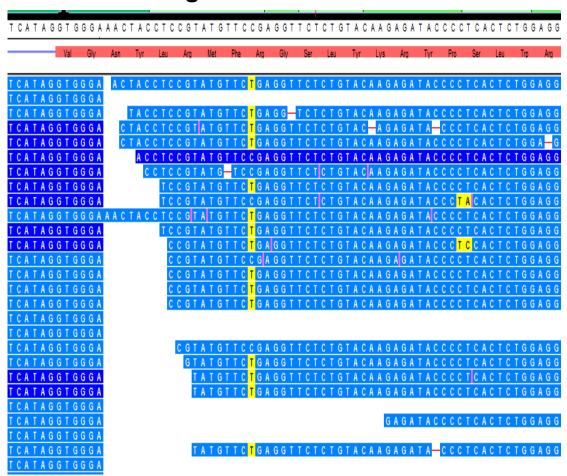
>5000X average coverage for DNA variants

Average uniformity >95%

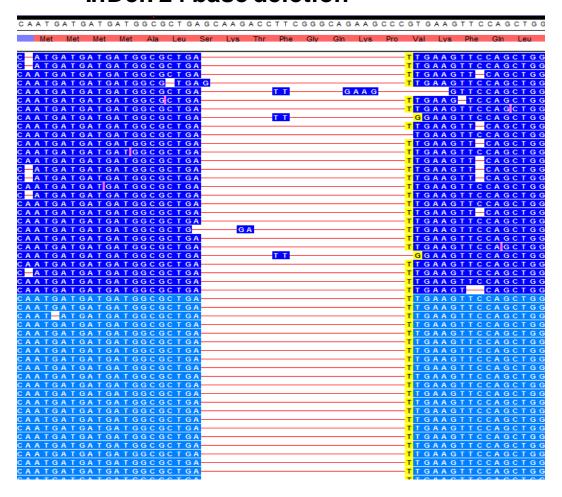
Average mapped reads >2,000,000 for RNA fusions

DNA Features Detected

- **SNV** = single nucleotide variant
- InDel = insertion/deletion
- Gene Amplification: ≥ 6-fold

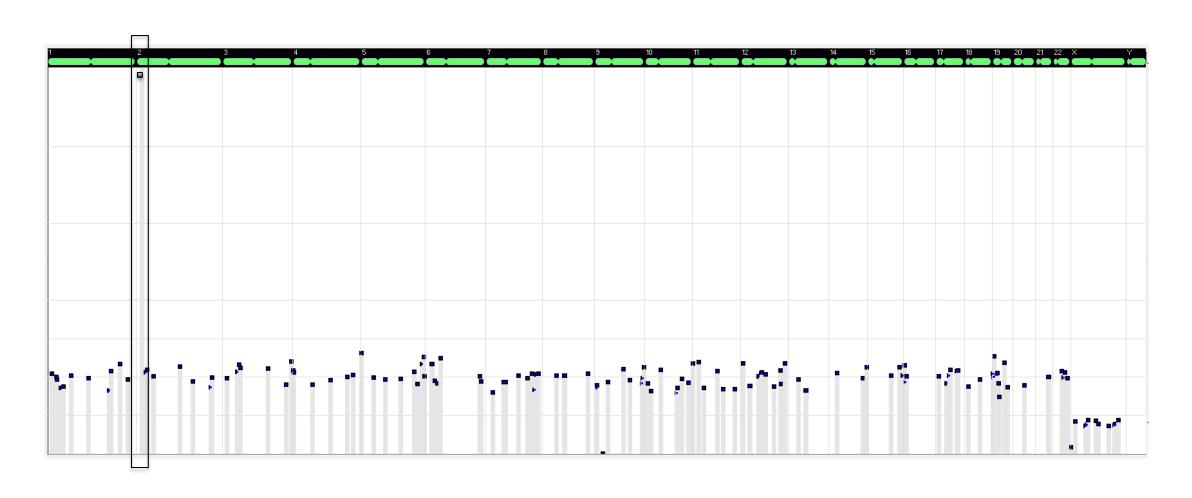

Verified technical performance:

- SNVs: 5% variant allele frequency
- InDels: 10% variant allele frequency



Assay is Sensitive and Specific

Single Nucleotide Variant: C to T


InDel: 24 base deletion

SMARCB1 c.118C>T, p.Arg40* SMARCB1 c.20_43delGCAAGACCTTCGGGCAGAAGCCCGinsT (p.Ser7llefs*56)

Detection of DNA Amplifications is Highly Specific

17

RNA Features Detected

- Gene Fusions annotated and unannotated (novel pairing)
- Gene Expression # reads per gene, c/w average of 4 housekeeping genes

n.b.: Gene Fusions:

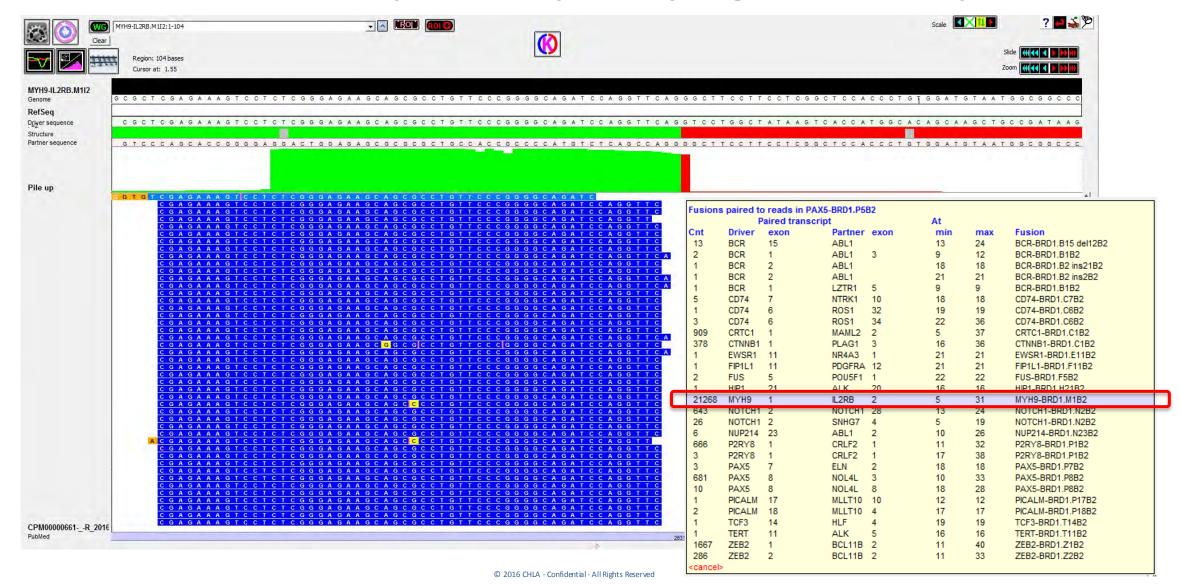
- 78 parent fusions
- >1,400 variants
- Ability to detect de novo fusions from pairing of existing primer pairs

A Diverse Range of Hematologic Fusions are Detected*

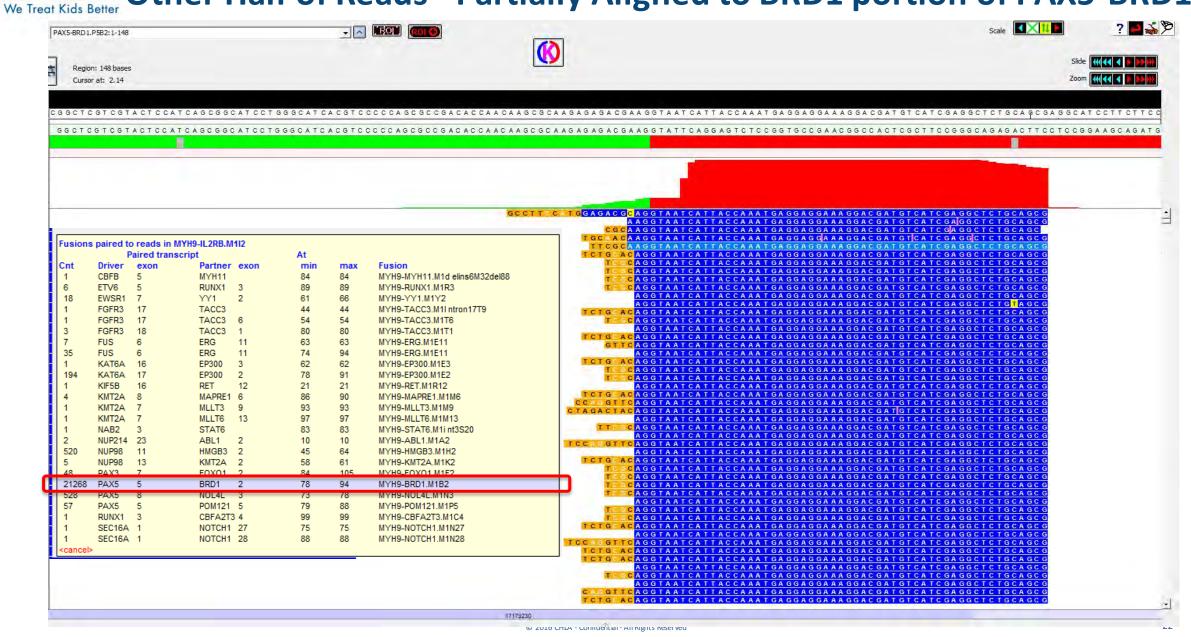
ATF7IP-JAK2	ETV6-NTRK3	P2RY8-CRLF2	RCSD1-ABL2
BCR-ABL1	ETV6-RUNX1	PAG1-ABL2	SSBP2-JAK2
BCR-JAK2	FIP1L1-PDGFRA	PAK5-JAK2	STIL-TAL1
CRLF2-P2RY8	FOXP1-ABL1	PML-RARA	TERF2-JAK2
EBF1-PDGFRB	MLL Rearrangement	RANBP2-ABL1	ZC3HAV1-ABL2
ETV6-ABL1	NUP214-ABL1	RBM15-MKL1	ZEB2-PDGFRB
ETV6-JAK2	NUP98-NSD1	RCSD1-ABL1	ZMIZ1-ABL1

*Confirmed samples used for verification

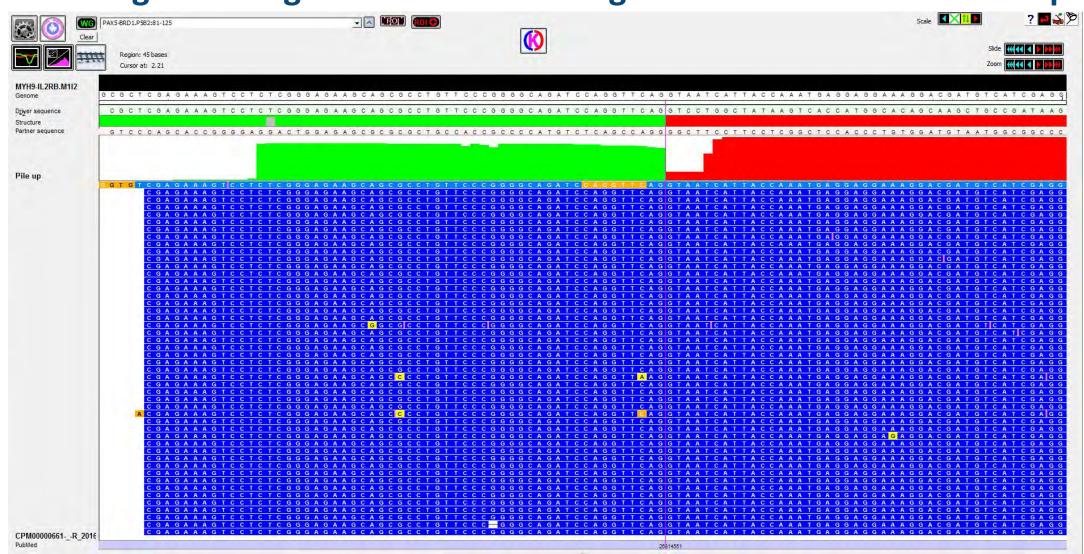
Key Solid Tumor Fusions were verified*


CCDC6-RET	Lung Adenocarcinoma
Cllorf95-RELA	Ependymoma
EML4-ALK	Lung Adenocarcinoma
ETV6-NTRK3	Congenital Mesoblastic Nephroma
EWSR1 Rearrangement	Ewing Sarcoma
FUS-CREB3L2	Fibromyxoid Sarcoma
GOPC-ROS1	Glioblastoma Multiforme
KIAA1549-BRAF	Pilocytic Astrocytoma
NPM1-ALK	Anaplastic Large Cell Lymphoma
PAX3-FOXO1	Alveolar Rhabdomyosarcoma
SS18-SSX1	Synovial Sarcoma

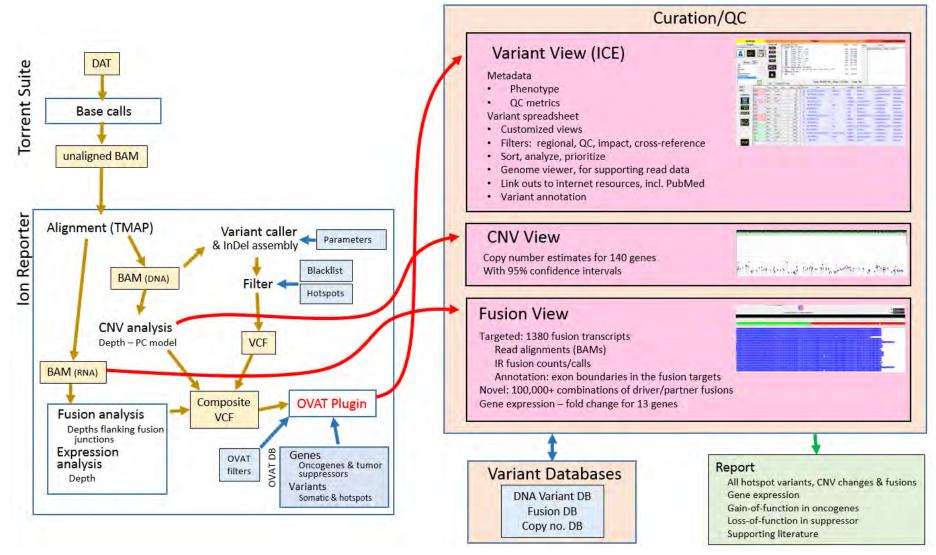
*Confirmed samples used for verification


Novel Tumor Fusions were Discovered

MYH9-IL2RB transcript – reads partially aligned to MYH9 portion


Other Half of Reads-Partially Aligned to BRD1 portion of PAX5-BRD1

Children's Hospital



Stitching these together – full reads aligned to MYH9-BRD1 transcript

Performance Improved with ICE (Integrated Curation Environment)

ICE Performance Specifications*

SNVs

Acrometrix test sample; >5% VAF)

Thermo Fisher Variant Caller

SNV

	Absent	Present
No Call	213,510	0
Call	9	303

Sensitivity: 100% Specificity: >99%

InDels

Acrometrix test sample; >10% VAF)

InDel

ICE InDel Variant Caller

	Absent	Present
No Call	213,803	0
Call	0	19

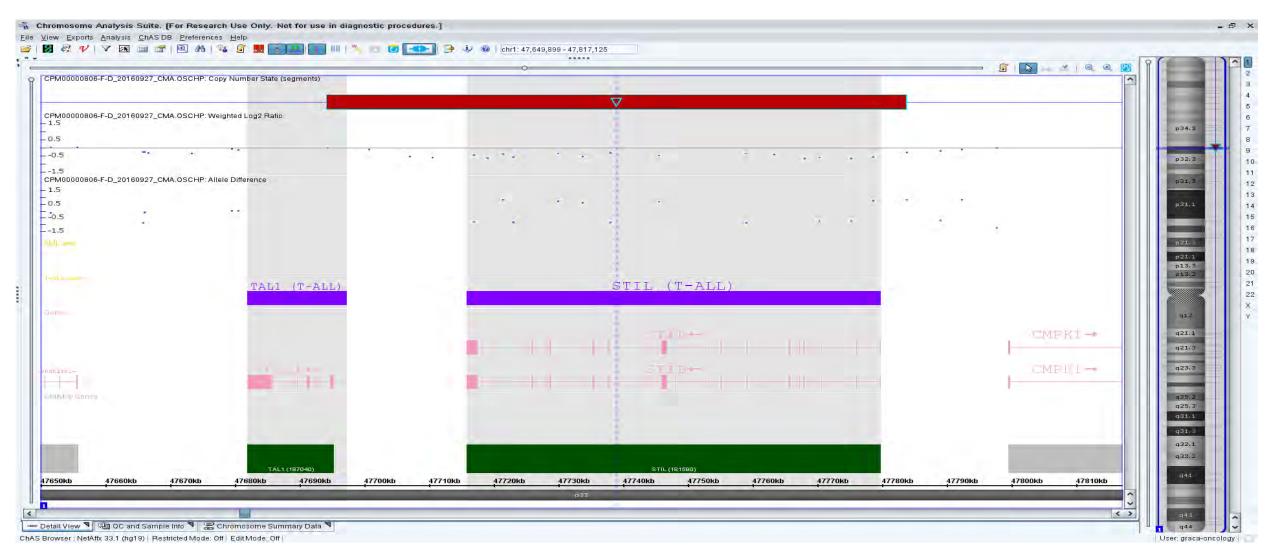
Sensitivity: 100%
Specificity: 100%

Outline

- Panel Content
- Technical aspects of the Panel
- Performance Verification
- Research Case Study
- Conclusions

Clinical Research Case Study #1: A Pediatric Cancer Sample with T-ALL

Cytogenetics: *LMO2-TCRA* fusion 46,XY,t(11;14)(p13;q11.2)[7]/46,XY[1]


LMO2-TCRA fusion seen in 5-10% of pediatric T-ALL

Results provided by Sammy Wu, CHLA cytogenetics

Chromosomal Microarray Results:

~80 kb Deletion in 1p33, Fusing 5' Portion of STIL to 3' Portion of TAL1

NGS Result: Two Dominant Fusions demonstrated:

STIL-TAL1 & FIP1L1-PDGFRA

- Two dominant fusions seen in the data
- The *PDGFRA* fusion can potentially be relevant for further clinical research

FUSION	FIP1L1(11) - PDGFRA(12)	158	Present	
FUSION	STIL(1) - TAL1(2)	124658	Present	Type2
FUSION	MET(13) - MET(15)	199	Present	
FUSION	STIL(1) - TAL1(2)	10225	Present	
FUSION	MET(17) - MET(20)	1367	Present	
FUSION	FIP1L1(13) - PDGFRA(12)	6689	Present	
FUSION	FIP1L1(13) - PDGFRA(12)	46	Present	

PDGFRA Hotspots Covered on the panel

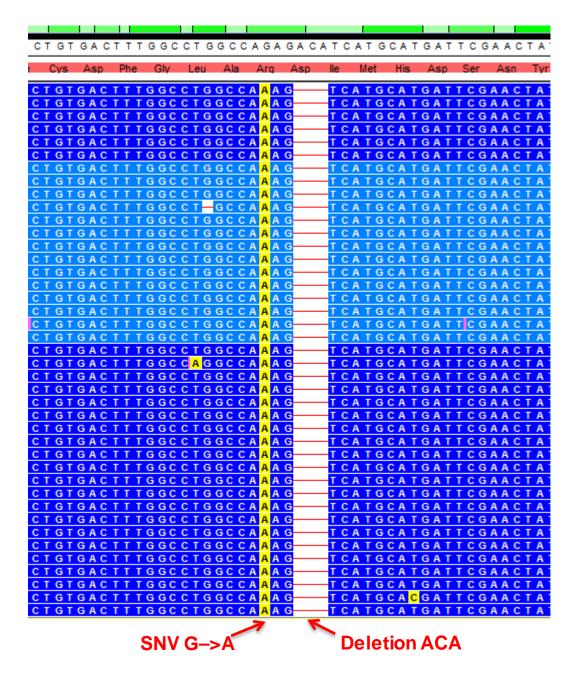
Mutation

p.N659K

p.T6741

p.D842V

p.D848K

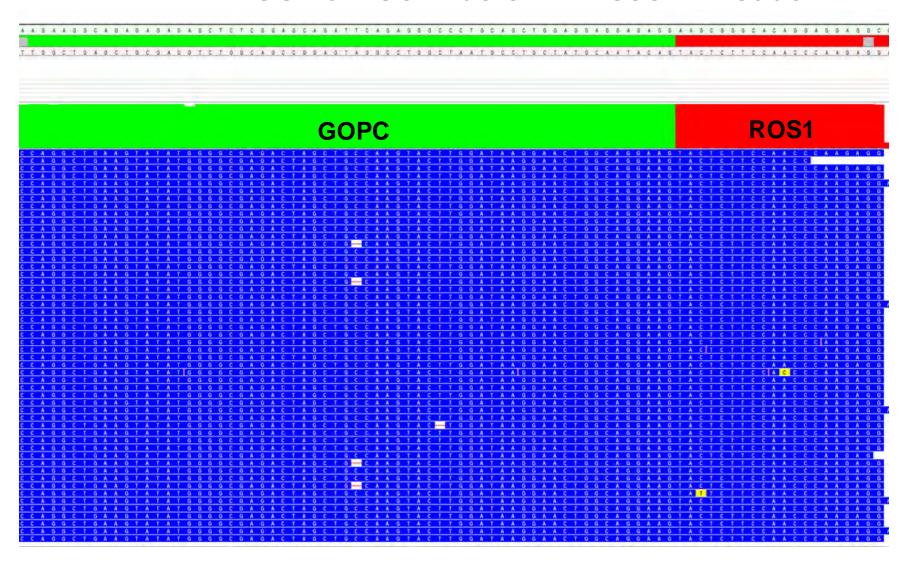

Detected *PDGFRA* Variant (D842V) [Deletion & Insertion]

NM_006206 (*PDGFRA*): c.2522_2527delinsAAG (p.Arg841_lle843delinsLysVal)

Present at roughly 14.22 % variant allele frequency

This variant was NOT DETECTED in the previous lymph node sample

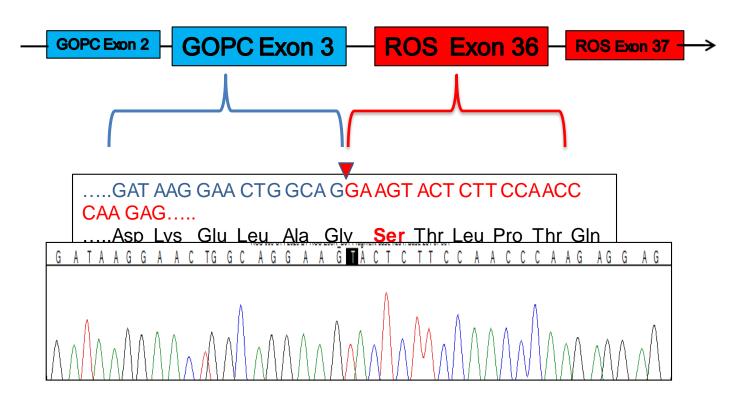
DOD 12/30/2016

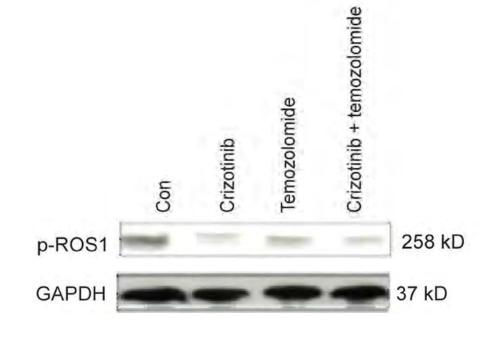


Clinical Research Case Study #2:

A Glioblastoma sample

- GOPC-ROS1 Fusion in 283317 Reads


GOPC-ROS1 Fusion relevance


Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG-ROS1 Fusion-Positive Glioblastoma

Arabinda Das¹, Ron Ron Cheng¹, Megan L.T. Hilbert¹, Yaenette N. Dixon-Moh¹, Michele Decandio¹, William Alex Vandergrift III¹, Naren L. Banik^{1,2}, Scott M. Lindhorst¹, David Cachia¹, Abhay K. Varma¹, Sunil J. Patel¹ and Pierre Giglio^{1,3}

¹Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA. ²Ralph H. Johnson VA Medical Center, Charleston, SC, USA. ³Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.

Cancer Growth Metastasis. 2015; 8:51-60.

Conclusions

- The assay is designed specifically for use in pediatric cancer research
 - Designed using AmpliSeq and Ion Torrent Technology*
 - Content developed in collaboration with CHLA & COG pediatric oncologists
 - 49 of 51 targets identified by COG TAP committee are included
- The same 52 genes designated as candidate therapeutic targets in Adult Oncomine Focus for NCI MATCH program are present in our panel as well
- Nearly 200 hotspot and full length genes already identified in pediatric cancer are also included
- Nearly 200 relevant gene fusions are included (> 1,500 combinatorial variants)
- Custom bioinformatics pipeline, ICE (Integtrated Curation Environment), enabling best in class precision, sensitivity, and specificity

Acknowledgements

Children's Hospital Los Angeles

Jaclyn Biegel Matt Heimenz

Alex Judkins Dennis Maglinte

Jonathan Buckley Gig Ostrow

Tracy Busse Gordana Raca

Xiaowu Gai

Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar. Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the rights to do so.